Showing posts with label next generation sequencing. Show all posts
Showing posts with label next generation sequencing. Show all posts

Tuesday, September 1, 2015

This Month in Blastocystis Research (AUG 2015)

I would like to highlight a comment that we published in PLoS Pathogens, - a paper that is free for download here. It gained some attention on Twitter, and it was recently reviewed in the Faculty of 1000.

We basically highlight the tricky situation that we so often encounter in the field of clinical microbiology, namely the one in which all non-fungal organisms isolated from the human intestinal tract are being referred to collectively as 'parasites'. The word 'parasite' has a negative connotation, indicating that the organism exploits the host with detrimental effects on the host. While this is true for some ciliates, for instance Giardia, other ciliates may in fact be mutualists, which means that these organisms have adapted to a life within a host, providing the host with one or more advantages. One such example is seen in herbivores, where ciliates and flagallates break down cellulose.

In the clinical microbiology lab we face different types of organisms when dealing with stool samples: Giardia, Cryptosporidium and Entamoeba histolytica are considered true parasites, i.e. organisms benefitting from the environment of a host, at the expense of the host, and symptoms such as diarrhoea may develop, indicating host damage. Parasites such as Cryptospordium are usually infecting an individual for a short while, with immunity developing. Meanwhile, we also encounter eukaryotic organisms that are known to be able to colonise the intestine for a very long time, - decades, without being expelled by the host; Blastocystis belong to this group. For some reason it is as if the body 'tolerates' the presence of the organism. Maybe Blastocystis is good at evading local immune responses, or maybe the body wishes to 'keep' Blastocystis for some reason and so  developed a way to tolerate it... as I've hinted at before on this blog, maybe Blastocystis may assist us in one or more metabolic processes, for instance, either directly or indirectly, maybe by selecting for or influencing bacterial communities. Indeed, we recently found evidence of Blastocystis being specifically related to certain groups of bacteria, which, if confirmed, opens up for a whole new line of research, including the use of Blastocystis as a probiotic.

I know that this last sentence may sound harsh in some people's ears; nevertheless, most research involving Blastocystis so far has been quite static and unimaginative, and it's about time that food microbiologist and the like start taking an interest in the micro-eukaryotes that tend to be common and stable conolisers of our guts.

If YOU take an interest in this topic, I suggest you look up the articles cited below.

References and further reading:

Andersen LO, Bonde I, Nielsen HB, & Stensvold CR (2015). A retrospective metagenomics approach to studying Blastocystis. FEMS Microbiology Ecology, 91 (7) PMID: 26130823

Lukeš J, Stensvold CR, Jirků-Pomajbíková K, & Wegener Parfrey L (2015). Are Human Intestinal Eukaryotes Beneficial or Commensals? PLoS Pathogens, 11 (8) PMID: 26270819

Parfrey LW, Walters WA, & Knight R (2011). Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions. Frontiers in Microbiology, 2 PMID: 21808637

Scanlan PD, Stensvold CR, Rajilić-Stojanović M, Heilig HG, De Vos WM, O'Toole PW, & Cotter PD (2014). The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiology Ecology, 90 (1), 326-30 PMID: 25077936

Thursday, July 3, 2014

This Month in Blastocystis Research (JUN 2014) - IMECs Edition

In June there was a paper out in Frontiers in Microbiology by Laura W Parfrey and co-workers identifying the diversity of intestinal microbial eukaryotic communities (IMECs) in humans and other mammals. It's probably one of the most interesting papers I've read for a long time; maybe because it expands on many of the things I've been blogging about - or at least intended to blog about (!) - over the past two years.

What the team did was to do comprehensive analysis of IMECs in both humans and mammals using broad specificity primers for PCR and next generation sequencing technology-based sequencing of the PCR products. While I'm not in a position to validate the analysis of the data, I'd just want to highlight the importance of the approach. It is very rare to see this type of analysis, despite the fact that it's probably the best currently available approach to studying the ecology, homeostasis and public health significance of IMECs. Some of these euks have probably co-evolved with humans and other animals over thousands and thousands of years and therefore may constitute part of the habitual/commensal flora; and so a current working hypothesis (Hygiene Theory) is that losing IMECs ('defaunation' due to Western life style (excessive hygiene and changes in diet)) may prove detrimental to human health and may be one of the most important reasons why we develop for instance allergies and other autoimmune diseases.

Blastocystis virtually obligate finding in Malawi citizens?
And indeed, what the authors found was that among 23 study individuals residing in agrarian communities in Malawi, Blastocystis and Entamoeba were almost obligate findings (not found in two infants, but apart from that almost a consistent finding), while none of the 13 (somewhat age-matched) study individuals from Boulder, Colorado, were infected with Blastocystis, and only two individuals had Entamoeba coli. I was surprised to read that Dientamoeba was not detected in any of the populations; it appears that there is a strong geographical component to the distribution of this parasite, but as the authors mention, specific tools are needed to confirm the absence.

The funny thing is that although this is not a paper specifically on Blastocystis, it is probably the most interesting surveys on Blastocystis coming from the US and a very valuable Blastocystis. Data on Blastocystis in this country is really scarce, but if the prevalence of the parasite is really as low as indicated in this study, then it's maybe quite understandable! And maybe (and this is a highly presumptuous 'maybe', I know) Blastocystis might even therefore an emerging pathogen in the US? When was the US experiencing the great IMECs wipe out? Can it be confirmed? Is there - within the US - also a strong geographical compoenent to the prevalence of IMECs?

Anyway, there are many interesting observations in the paper - and please visit the supporting files. Blastocystis ST11 was confirmed in an elephant (which also hosted Entamoeba moshkovskii! Probably first report of this parasite in an animal). ST13 was found in a Gazelle; not surprisingly, but nice to see independent data confirming what few researchers have found until now. ST4 was found in a sheep and in Okapis; when it comes to ST4, I'm hardly surprised about anything; it appears to be such a sporadic finding in a diversity of non-human hosts (i.e. low host specificity and incidental); one sheep also had ST8, a subtype almost exclusively seen in non-human primates (even South American monkeys rather than for instance African monkeys and apes), so this was surprising too. ST8 was moreover found in two kangaroos (not the first time), in an okapi (different from two first ones) which also hosted ST12, and in an armadillo!

Take home messages include:

1) The study is one of the first to virtually survey IMECs in human and non-human faecal samples using NGS tools.
2) The study confirms a very high prevalence of Blastocystis in some sub-Saharan African communities (for more on this, see a previous blog post), and interestingly, the prevalence and co-infection rate of (up to four species of) Entamoeba was comparably high.
3) Data suggest that IMECs in Western populations are highly reduced compared to rural African populations, but we still need to know more about the relative distribution of for instance fungi and whether these fungi are actually colonising the gut or just carry over from ingested food; right now, it seems as if there might be an inverse relationship between fungal and non-fungal IMECs... something that we can hopefully soon gather sufficient data on for publishing.
4) For those interested in Blastocystis subtype data, including host specificity and geographical distribution, there is a lot to look at in the paper (including supplementary files).

There's a lot more to be said about this paper, but I will sort of leave it here. But please go and read it!

Reference:

Parfrey, L., Walters, W., Lauber, C., Clemente, J., Berg-Lyons, D., Teiling, C., Kodira, C., Mohiuddin, M., Brunelle, J., Driscoll, M., Fierer, N., Gilbert, J., & Knight, R. (2014). Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity Frontiers in Microbiology, 5 DOI: 10.3389/fmicb.2014.00298

Thursday, May 1, 2014

This Month In Blastocystis Research (APR 2014)

Due to all sorts of activities I have not been able to update myself with 'novelties' in the scientific Blastocystis literature lately.

Instead, I would like to highlight two review/opinion papers on the use of PCR-based methods for diagnosis of intestinal parasitic infections in the clinical microbiology laboratory.

Both papers have been published very recently (actually one is still 'in press'). The first is co-authored by Jaco J Verweij and myself, and appears in the April issue of 'Clinical Microbiology Reviews'. This paper aims to provide a relatively systematic review of the extent and relevance of PCR- and sequencing-based methods for diagnosis and epidemiology studies of intestinal parasites, and is as such an inventory of all sorts of DNA-based diagnostic and typing modalities for individual protists and helminths.

The second one is authored solely by Jaco J Verweij and is currently in the 'first online' section in the journal 'Parasitology'. This paper offers a discussion of the application of PCR-based method as a supplementary tool or a substitute for conventional methods (microscopy, antigen detection, etc.). Dr Verweij deals with central questions such as 'Is Molecular Detection Good Enough?' and 'Is Molecular Detection Too Good To Be True?'.

And so these two papers complement each other quite well. For those interested in the very low prevalence of intestinal helminth infections in the Western world, the latter paper has a table which summarizes some quite stunning data.

Although DNA-based methods currently in use do have quite a few limitations, I do believe that for a long while the application of species- and genus-specific PCR methods (real-time PCR, conventional PCR + sequencing, etc.) will appear relevant and state-of-the-art. Dr Verweij, I and a few of our colleagues around the world are currently discussing to which extent next generation sequencing methods can be used to
  • generate data that can assist us in identifying the role of pro- and eukaryote microbial communities in health and disease
  • serve as a tool to generate sequences that can be processed by designated software and thereby identify patterns of microbial communities associated with various disease and health conditions
To this end, at the Laboratory of Parasitology, Statens Serum Institut, we are currently assisting in the development of a software called BIONmeta. BION meta is an open-source package for rRNA based pro- and eukaryote community analysis. Like Qiime and Mothur it is open source but with a growing number of advantages. The package has so far been developed mostly by Niels Larsen (DK), one of the original Ribosomal Database Project authors. It is as yet unpublished, but has been selected for in-house trial-use by companies and institutions that also partly sponsor its development.When relevant, I'll post more information on this software.

References:

Verweij JJ, & Stensvold CR (2014). Molecular testing for clinical diagnosis and epidemiological investigations of intestinal parasitic infections. Clinical Microbiology Reviews, 27 (2), 371-418 PMID: 24696439

Verweij, JJ. (2014). Application of PCR-based methods for diagnosis of intestinal parasitic infections in the clinical laboratory Parasitology, 1-10 DOI: 10.1017/S0031182014000419

Saturday, February 16, 2013

Waiting For The Human Intestinal Eukaryotome

We were lucky enough to have a paper accepted for publication in the ISME Journal (Nature Publishing Group) in which we call for data on the "human intestinal eukaryotome".

In the paper, we start out:

"Recent developments in Next Generation Sequencing (NGS) technologies have allowed culture-independent and deep molecular analysis of the microbial diversity in faecal samples, and have provided new insights into the bacterial composition of the distal gut microbiota. Studies of the microbiome in different patient groups using metagenomics or 16S rRNA gene sequencing are increasing our knowledge of how the microbiota influences health and disease. The majority of recent advances in our understanding of human microbiota structure and dynamic changes in disease were made through phylogenetic interrogation of small subunit (SSU) rRNA (Paliy and Agans 2012). However, until recently such studies have generally failed to include data on common eukaryotic, endobiotic organisms such as single-celled parasites and yeasts ('micro-eukaryotes'). This deficiency may strongly bias the interpretation of results and ignoring an entire kingdom of organisms is a major limitation of human microbiome studies."

Saturday, June 2, 2012

Blastocystis and Microbiomology

Speaking of metagenomics: The July 2012 issue of one of the most prestigious journals in the field of clinical microbiology, Clinical Microbiology and Infection (CMI – published by European Society of Clinical Microbiology and Infectious Diseases), focuses entirely on recent advances in metagenomics, including its implications on clinical microbiology. Several of the keynote speakers from the MetaHIT conference in Paris (March, 2012) have contributed with papers, including Rob Knight, Willem M. de Vos and Paul W. O’Toole. In his editorial, Didier Raoult, puts emphasis on mainly two things: 1) that we need to be patient with data obtained from studies using metagenomics, since currently some conclusions are pointing in different directions and data are still scarce, and 2) that metagenomic studies should be independent of financial support from commercial sources, such as the industry of antibiotics and probiotics.

Although it may be too early to make b/w inferences from data already published, I think that the pioneers in metagenomics teach us to re-think or at least modify several hypotheses about the role of intestinal microbes in gastrointestinal health and disease and pursue new and exciting trajectories. In this blog post I would like to highlight a few things that may be interesting to people who are not familiar with metagenomics, but who are interested in our gut flora and how it may impact our lives.

So, what is metagenomics? Well, only a few years ago, microbiologists were used to looking at one single organism at a time, when exploring the potential role of an organism in health and disease. They were dependent on isolating the organism, for instance by culture, in order to have sufficient material for molecular studies, and in order to avoid mix-up of data from contaminating organisms. However, the human intestinal microbiome (gut flora) is made up by a plethora of organisms, mainly prokaryotes (bacteria), but also to some extent eukaryotes (parasites and fungi), archaea and viruses. Metagenomics, facilitated by massive high-throughput parallel sequencing of nucleic acids extracted from human faecal samples, allows us to get a holistic picture of the entire gut flora of a person. I.e.: We move from examining one single species or organism at a time, to be analysing entire eco-systems. We get to know not only the composition of microbic species inhabiting our gut, but also how they impact our body physiology: Interestingly, Gosalbes et al. (2012) describe how the composition of the intestinal flora may differ significantly from person to person, but later shows that the active intestinal flora is fairly similar among healthy individuals. So, what’s the active flora? Briefly: while metagenomics analyses the DNA (16s rDNA) from the microbiome and hence provides us with data on the mere composition of microbes, including a quantification, metatranscriptomics looks at RNA communities by looking at 16S rRNA and mRNA transcripts. In this way, we get to know the function of the intestinal microbiota and can temporarily ignore the part of the microbial community that is in “stand-by” mode only. The collective genome of the intestinal microbes vastly surpasses the coding capacity of the human genome with more than 3 million genes - in comparison the human genome comprises 20,000-25,000 protein-coding genes.

So far, metagenomic studies have focused mainly on bacteria, and hence we know very little about how intestinal parasites directly or indirectly impact the remaining gut flora and the host, and, importantly, how the bacterial flora influences the presence and activity of parasites. This is due in part to methodological limitations, but mainly to the fact that the bacterial microbiome can be viewed as an organ of the human body (Baquero et al., 2012) taking care of vital and irreplaceable functions that the host is not otherwise capable of, ranging from energy and vitamin metabolism to epithelial barrier integrity and immune modulation (Salonen et al., 2012). Like any other organ, the microbiome has physiology and pathology, and the individual (and collective?) health might be damaged when its collective population structure is altered (Baquero et al, 2012). This is one of the reasons why studies of host-gut flora interactions have focused on bacteria.

One of the striking findings in metagenomic studies is that humans can be more or less successfully stratified into three enterotypes based on their intestinal flora (Arumugam et al., 2011):


We see that the three enterotypes are dominated by mainly three different types of bacteria (Bacteroides, Prevotelia and Ruminocoocus, respectively). However, as mentioned earlier, functional analysis (and probably a lot more sampling) is required to understand microbial communities. One of the interesting topics in this respect is how enterotypes correlate to different health/disease phenotypes; i.e. whether people with a certain gut flora are more prone to (a) certain type(s) of disease(s).There is preliminary evidence that variations in the microbiota are linked to diseases including bowel dysfunction and obesity.

In terms of parasites, I believe that in the near future we will see data revealing to which extent - if any - common intestinal micro-eukaryotes such as Blastocystis and Dientamoeba correlate with these enterotypes or other subsets of bacteria which will enable us to generate hypotheses on the interaction of micro-eukaryotes and the bacterial flora, which in turn may impact host physiology. I will expand a little more on this in an upcoming letter in Trends in Parasitology (article in press).

Interested in more: Why not have a look at Carl Zimmer's article in The New York Times about gut flora transplantation, or read about modulating the intestinal microbiota of older people to promote enhanced nutrition utilisation and to improve general health (O'Toole et al., 2012)... Also, have a look at my most recent blog post.

Literature:

O’Toole, P. (2012). Changes in the intestinal microbiota from adulthood through to old age Clinical Microbiology and Infection, 18, 44-46 DOI: 10.1111/j.1469-0691.2012.03867.x  

Gosalbes, M., Abellan, J., Durbán, A., Pérez-Cobas, A., Latorre, A., & Moya, A. (2012). Metagenomics of human microbiome: beyond 16s rDNA Clinical Microbiology and Infection, 18, 47-49 DOI: 10.1111/j.1469-0691.2012.03865.x  

Baquero, F., & Nombela, C. (2012). The microbiome as a human organ Clinical Microbiology and Infection, 18, 2-4 DOI: 10.1111/j.1469-0691.2012.03916.x  

Salonen, A., Salojärvi, J., Lahti, L., & de Vos, W. (2012). The adult intestinal core microbiota is determined by analysis depth and health status Clinical Microbiology and Infection, 18, 16-20 DOI: 10.1111/j.1469-0691.2012.03855.x

Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D., Fernandes, G., Tap, J., Bruls, T., Batto, J., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., Kurokawa, K., Leclerc, M., Levenez, F., Manichanh, C., Nielsen, H., Nielsen, T., Pons, N., Poulain, J., Qin, J., Sicheritz-Ponten, T., Tims, S., Torrents, D., Ugarte, E., Zoetendal, E., JunWang, ., Guarner, F., Pedersen, O., de Vos, W., Brunak, S., Doré, J., Consortium, M., Weissenbach, J., Ehrlich, S., & Bork, P. (2011). Enterotypes of the human gut microbiome Nature, 474 (7353), 666-666 DOI: 10.1038/nature10187

Sunday, May 20, 2012

Brave New World

Using Blastocystis as an example, we have only recently realised the fact that conventional diagnostic methods in many cases fail to detect Blastocystis in faecal samples, which is why we have started using molecular diagnostics for Blastocystis. I was also surprised to realise that apparently no single drug can be used to treat Blastocystis, and that in fact we do not know which combo of drugs will actually consistently eradicate Blastocystis (Stensvold et al., 2010).

There will come a time - and it will be soon - where it will be common to use data from genome sequencing of pathogenic micro-organisms to identify unique signatures suitable for molecular diagnostic assays and to predict suitable targets (proteins) for chemotherapeutic intervention; in fact this is already happening (Hung et al., in press). However, despite already harvesting the fruits of recent technological advances, we will have to bear in mind that the genetic diversity seen within groups of micro-organisms infecting humans may be quite extensive. This of course will hugely impact our ablility to detect these organisms by nucleic acid-based techniques. For many of the micro-eukaryotic organisms which are common parasites of our guts, we still have only very little data available. For Blastocystis, data is building up in GenBank and at the Blastocystis Sequence Typing Databases, but for other parasites such as e.g. some Entamoeba species, Endolimax and Iodamoeba, we have very little data available. We only recently managed to sequence the small subunit ribosomal RNA gene of Iodamoeba, and we demonstrated tremendous genetic variation within the genus; it is now clear that Iodamoeba in humans comprises a species complex rather than "just" Iodamoeba bütschlii (Stensvold et al, 2012).

Cysts of Iodamoeba
Ribosomal RNA is present in all living cells and is the RNA component of the ribosome. We often use this gene for infering phylogenetic relationships, i.e. explaining how closely or distantly related one organism is to another. This again assists us in hypothesising on transmission patterns, pathogenicity, evolution, drug susceptibility and other things. Since ribosomal RNA gene data are available for most known parasites, we often base our molecular diagnostics on such data. However, the specificity and sensitivity of our molecular diagnostic assays such as real-time PCRs are of course always limited by the data available at a given point in time (Stensvold et al., 2011). Therefore substantial sampling from many parts of the world is warranted in order to increase the amount of data available for analysis. In terms of intestinal micro-eukaryotes, we have only seen the beginning. It's great to know data are currently builiding up for Blastocystis from many parts of the world, - recently also from South America (Malheiros et al., 2012) - but the genetic diversity and host specificity of many micro-eukaryotes are still to be explored. It may be somewhat tricky to obtain information, since conventional PCR and sequencing offer significant challenges in terms of obtaining sequence data; such challenges can potentially be solved by metagnomic approaches - today's high throughput take on cloning; however, although the current next generation sequencing technology hype makes us feel that we are almost there, it seems we still have a long way to go - extensive sampling is key!

Cited literature:

Hung, G., Nagamine, K., Li, B., & Lo, S. (2012). Identification of DNA Signatures Suitable for Developing into Real-Time PCR assays by Whole Genome Sequence Approaches: Using Streptococcus pyogenes as a pilot study Journal of Clinical Microbiology DOI: 10.1128/JCM.01155-12

Malheiros AF, Stensvold CR, Clark CG, Braga GB, & Shaw JJ (2011). Short report: Molecular characterization of Blastocystis obtained from members of the indigenous Tapirapé ethnic group from the Brazilian Amazon region, Brazil. The American journal of tropical medicine and hygiene, 85 (6), 1050-3 PMID: 22144442

Stensvold, C., Lebbad, M., & Clark, C. (2011). Last of the Human Protists: The Phylogeny and Genetic Diversity of Iodamoeba Molecular Biology and Evolution, 29 (1), 39-42 DOI: 10.1093/molbev/msr238  

Stensvold, C., Lebbad, M., & Verweij, J. (2011). The impact of genetic diversity in protozoa on molecular diagnostics Trends in Parasitology, 27 (2), 53-58 DOI: 10.1016/j.pt.2010.11.005

Stensvold, C., Smith, H., Nagel, R., Olsen, K., & Traub, R. (2010). Eradication of Blastocystis Carriage With Antimicrobials: Reality or Delusion? Journal of Clinical Gastroenterology, 44 (2), 85-90 DOI: 10.1097/MCG.0b013e3181bb86ba