Showing posts with label mitochondrion-like organelle. Show all posts
Showing posts with label mitochondrion-like organelle. Show all posts

Thursday, November 10, 2016

This Month in Blatstocystis Research (OCT 2016)

A few things to highlight:

I'm very pleased to announce the Special Issue on Blastocystis recently appearing in Parasitology International - go here for the list of contents. The papers included in this issue represent the breadth of the contributions made to the 1st International Blastocystis Symposium, which took place last year in Ankara. A couple of review and opinion articles written by members of the Scientific Committee are accompanied by several articles outlining original research findings that were presented at the symposium. This special issue is particularly useful for younger researchers who wish to familiarise themselves with some of the methods that are currently in use in surveys of Blastocystis.
Readers should not expect to find articles on Blastocystis in a microbiota context; nor should they expect to see data from seminal studies that challenge the view that Blastocystis is a possible pathogen. Nevertheless, there is an interesting opinion paper with the title "Eradication of Blastocystis in humans--really necessary for all?"

Led by Dr Alison Jacob and Dr Graham Clark, London School of Hygiene and Tropical Medicine, our group just published an article on a comparative study of Blastocystis mitochondrial genomes. In general, mitochondrial genomes differ vastly in length, structure, and gene content across organisms, and by studying these genomes it has been possible to develop hypotheses on how these organisms have evolved including the adaptive/non-adaptive processes involved in shaping organismal and genomic complexity. Unlike most anaerobic eukaryotes, Blastocystis does not have true mitochondria but has mitochondrion-related organelles (MROs; also referred to as mitochondrion-like organelles [MLO]) that contain a genome. In the study in question, we sequenced and compared mitochondrial genomes from subtypes 1, 2, 3, 4, 6, 7, 8, and 9. All of them have the same genes in the same order, but two curiosities were noted. One gene, called orf160, as stop codons near the beginning of the coding region in most subtypes. A second gene, coding for ribosomal protein S4, lacks a start codon in some subtypes.
In both cases, these characteristics would normally prevent a gene from being expressed, but because these genes are otherwise conserved and most of the gene is 'intact', it seems likely that the genes are functional. Ribosomal protein S4 is considered an essential component of the ribosome needed for protein synthesis in the organelle. How the genes are expressed to produce functional proteins remains a mystery, - just one more peculiarity of Blastocystis!

In the growing pool of articles exploring relationships between intestinal parasites and gut microbiota, I was pleased to discover an article by Iebba et al. (2016) on "Gut microbiota related to Giardia duodeanlis, Entamoeba spp. and Blastocystis hominis infections in humans from Côte d'Ivoire". In this observational study, the authors used qPCR to detect groups of bacteria that are indicative of dysbiosis vs eubiosis, dysbiosis being a perturbed, imbalanced microbiota and eubiosis being a healthy, balanced gut microbiota. The authors found that individuals with Blastocystis and Entamoeba were characterised by eubiosis, while individuals with Giardia were characterised by dysbiosis. It says that samples (n = 20) were randomly chosen, but even so, the number of samples tested was low, and care should be taken when interpreting the results. The overall approach, however, is interesting, and somewhat resembles the work that we have been doing in our lab (ref). I also recently blogged about another study with a similar aim (go here to view the post).

I would also like to bring your attention to the EMBO Conference "Anaerobic protists: Integrating parasitology with mucosal microbiota and immunology", which will take place in Newcastle upon Tyne, UK in Aug/Sep 2017 (image). I will be there doing my best to deliver a stimulating talk on current knowledge and advances in Blastocystis and Dientamoeba research. You can visit the conference website by folloing this link

References:

Dogruman-Al F, Stensvold CR, & Yoshikawa H (2016). Editorial - PAR INT - special issue on Blastocystis. Parasitology international, 65 (6 Pt B) PMID: 27742000

Iebba V, Santangelo F, Totino V, Pantanella F, Monsia A, Di Cristanziano V, Di Cave D, Schippa S, Berrilli F, & D'Alfonso R (2016). Gut microbiota related to Giardia duodenalis, Entamoeba spp. and Blastocystis hominis infections in humans from Côte d'Ivoire. Journal of infection in developing countries, 10 (9), 1035-1041 PMID: 27694739

Jacob AS, Andersen LO, Pavinski Bitar P, Richards VP, Shah S, Stanhope MJ, Stensvold CR, & Clark CG (2016). Blastocystis mitochondrial genomes appear to show multiple independent gains and losses of start and stop codons. Genome biology and evolution PMID: 27811175

Smith DR (2016). The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs? Briefings in functional genomics, 15 (1), 47-54 PMID: 26117139

Monday, February 3, 2014

This Month In Blastocystis Research (JAN 2014)

Investigations into the 'biodiversity' existing in a given host is interesting for a number of reasons. One of these reasons has to do with how microorganisms present in our bodies may impact each other or the host. Numerous fields of research are developing at the moment at all levels from studies of gut microbes influencing host microRNA response to bacterial infections to epidemiological/public health studies examining the increased morbidity or risk associated with contracting infection/developing disease given that some infection/disease is present already. Sometimes the reverse is seen, namely that co-infection by multiple parasites is associated with a morbidity lower than the morbidity seen when only one of the parasites is present. For instance, a 2012 study saw that children infected by both Plasmodium falciparum (causing malaria) and hookworm had lower odds of anemia and iron deficiency than their counterparts infected with P. falciparum alone. Other authors have recently reviewed what they see as compelling evidence of chronic viral and helminth coinfections capable of modulating deleterious malaria-specific immune responses. Obviously such types of information are critical to the development of control measures against malaria and helminth infections. A Nigerian colleague of mine is currently exploring co-infections in quite a large Nigerian population, and investigating associations between malaria and soil-transmitted helminths; I'm thankful to be involved.

Along these lines, a new paper sees an inverse association between Blastocystis carriage and tuberculosis/Mycobacterium tuberculosis infections (TB). Dr Franke and colleagues carried out a case–control study to examine associations between parasite infection and tuberculosis (TB) in children in Lima, Peru. Logistic regression analyses revealed that Blastocystis infection was strongly associated with a lower risk of TB (P = 0.002). Hence, the study seems to suggest that Blastocystis carriage may protect against TB. The authors hypothesise that a pro-inflammatory/Th1 response potentially elicited by Blastocystis may protect against other infections, such as TB. While we know very little about Blastocystis induced immunity, little seems to suggest that Blastocystis is related to a chronic pro-inflammatory immunological alert. At least the colonic mucosa of patients with Blastocytis appears to be normal by endoscopy. Given the prevalence of Blastocystis that we have found in the aforementioned Nigerian study, I'd suspect very little TB to be present in this cohort...

The authors highlight a major limitation of their finding, namely the one related to the directionality of the association: It might as well be TB 'protecting' against Blastocystis. Maybe the behaviour (and thereby the exposure to Blastocystis) of patients with TB is different from the behaviour of those who do not have TB; I don't think so though.
I could have wished that a similar analysis had been performed using another common micro-eukaryote in children that the authors did not test for, namely Dientamoeba fragilis. It would be useful to know whether the same association could be identified, or whether the association was specific to Blastocystis. In fact, a general analysis of the microbiota (16S/18S) would have been in place here to learn about other factors potentially responsible for the observations.

Btw, there are some ASM conferences coming up this year relevant to the topic:

1. 5th ASM Conference on Beneficial Microbes, September 27-30, 2014, Washington DC.
2. 1st ASM Conference on Polymicrobial Infections, November 13-16, 2014, Washington DC.

On a different note, there is a paper out by Dr Poirier and his colleauges who have been publishing extensively on Blastocystis, and who were the first ever to sequence and annotate a nuclear genome of Blastocystis. In this new article the authors present a new set of primers applicable to all subtypes of Blastocystis found in humans and targeting the DNA of the mitochondrion-like organelle (MLO). This is reminiscent of the primers used for barcoding (18S analysis), and indeed the primers were validated using strains for which 18S data were available.

The paper highlights a variety of interesting topics and discusses the overall applicability of the two methods  (18S barcoding vs. subtyping using the single-copy MLO rDNA). In both of these scenarios the authors cloned the resulting PCR products to compare intra-isolate genetic variability - something which in itself is very interesting. However, cloning of PCR products is something that is not regularly done in most labs due to time and money constraints. Direct sequencing of barcode products reveals the predominating strain in a mixture, given that no other causes of preferential template amplification exist (e.g. selective primers) and hence shows the consensus sequence; sequence traces may partially or completely fail to reflect cases of mixed infection. However, the issue of not detecting mixed ST infections or mixtures of the same subtype is generally recognised.

The authors present a phylogenetic analysis of the MLO rDNA sequences included and come up with a tree topology different to the one usually seen. Usually, ST1, ST2 and ST5 cluster together, ST3, ST4, and ST8 go together, and ST6, ST7, and ST9 go together. Here, ST1 goes with ST2 and ST3. When I studied the MLOs of Blastocystis on genome level, one of my aims was to see if I could identify evolutionary patterns that had so far not been appreciated and that could be exploited in new hypotheses on the epidemiology and clinical significance of the parasite. Also, as the authors suggest here, mitochondrial DNA is haploid and therefore extremely useful when unambiguous base calling is important as it is in typing schemes. However, so far, when doing phylogenetic analysis of MLO nt sequences and even concatenated MLO nad proteins, we have obtained tree topologies identical to that seen when the 18S gene is used. Maybe the different topology seen here may be due to the way the alignment was constructed/edited? In any case, bootstraps are very low, but if confirmed the finding is very interesting.

If you have half an hour, treat yourself to "A resurgence in Field Research is Essential to Better Understand the Diversity, Ecology, and Evolution of Microbial Eukaryotes".

Literature:

Archambaud C, Sismeiro O, Toedling J, Soubigou G, Bécavin C, Lechat P, Lebreton A, Ciaudo C, & Cossart P (2013). The intestinal microbiota interferes with the microRNA response upon oral Listeria infection. mBio, 4 (6) PMID: 24327339

Franke MF, Del Castillo H, Pereda Y, Lecca L, Fuertes J, Cárdenas L, Becerra MC, Bayona J, & Murray M (2013). Parasite Infection and Tuberculosis Disease among Children: A Case-Control Study. The American Journal of Tropical Medicine and Hygiene PMID: 24379242 

Frosch AE, & John CC (2012). Immunomodulation in Plasmodium falciparum malaria: experiments in nature and their conflicting implications for potential therapeutic agents. Expert Review of Anti-Infective Therapy, 10 (11), 1343-56 PMID: 23241191

Heger TJ, Edgcomb VP, Kim E, Lukeš J, Leander BS, & Yubuki N (2013). A Resurgence in Field Research is Essential to Better Understand the Diversity, Ecology, and Evolution of Microbial Eukaryotes. The Journal of Eukaryotic Microbiology PMID: 24325268

Poirier P, Meloni D, Nourrisson C, Wawrzyniak I, Viscogliosi E, Livrelli V, & Delbac F (2014). Molecular subtyping of Blastocystis spp. using a new rDNA marker from the mitochondria-like organelle genome. Parasitology, 1-12 PMID: 24467909 

Righetti AA, Glinz D, Adiossan LG, Koua AY, Niamké S, Hurrell RF, Wegmüller R, N'Goran EK, & Utzinger J (2012). Interactions and potential implications of Plasmodium falciparum-hookworm coinfection in different age groups in south-central Côte d'Ivoire. PLoS Neglected Tropical Diseases, 6 (11) PMID: 23133691