Saturday, February 23, 2013

Blastocystis aux Enfers

We tremble at the thought of being devoured by a ferocious animal, - of ending our days in a narrow, suffocating slimy tube covered in acidic, nauseating glaze! Remarkably, for some eukaryotic beings, this is the only way forward if they want to carry on with their lives! Intestinal protists such as Blastocystis are in a state of hibernation when outside our bodies and the only thing that may rouse these Sleeping Beauties to action is the passage through low pH enzyme ponds. They thrive, grow and raise their progeny only in the swampy Tartarus of our large intestines; they bequeath to their offspring the affinity for this gloomy, filthy slew; this murky, densely populated, polluted channel, and when the pool of poo becomes all too arid, they know it’s time to buckle up, shut down, and prepare themselves for the great unknown which can potentially mean death to them if eventually they are not lucky enough to be gulped down by another suitable host.

Source
And yet, despite their remarkable modesty and humble requirements these little buggers are being bullied by their inhospitable human hosts; we’d throw anything at them to force them out, organic and inorganic compounds meant to arrest or even kill them. But the whelps of Blastocystis appear extremely resilient, which may hold the key to part of their success; they stay afloat on the Styx of our bowels. In order to eschew Flagyl, perhaps they bribed Phlegyas?

I think it's sometimes useful to put things into a completely different perspective. In any event, from an evolutionary biology standpoint it is highly interesting that a genus which is genetically related to water molds such as those causing potato blight and sudden oak death, has so successfully adapted to a parasitic, anaerobic life style, capable of protractedly colonising a plethora of very diverse host species including members of primates, other mammals, birds, reptiles, amphibians and arthropods and thereby evading innate and adaptive immune defenses from such a diverse range of hosts. One could be inclined to say: Well done! But which is it? Parasitism? Commensalism? Mutalism? Symbiosis? And what will happen to Blastocystis in the future? Will this successful crusader eventually succumb to our avid but maybe imprudent war strategies? And if so, what will happen to us after removing such a common player from our intestinal ecosystems?

Friday, February 22, 2013

Bubbly Blasto!

Yesterday, I was checking up on a fresh Blastocystis culture. I loaded 20 µL of the culture "sediment" on to a glass slide, placed the cover slip on top and examined it by light microscopy. While examining the slide, I observed a multitude of dividing cells, indicating vigorous growth and a thriving strain, and once again I was struck by the appearance of dividing Blastocystis. This is basically what they may look like:

Like soap bubbles really, only a lot smaller obviously (mikrons), and somewhat opaque! You'll see them in different sizes and the way they divide looks just like this. Apparently some sort of random budding or multiple fission. You'll see little more than this bubbly structure, which means that there are very few morphological hallmarks to describe. A few nuclei may be discernible along the cytoplasmatic rim, but that's about it when you use light microscopy. Ultrastructural and biochemical analysis is required if you hope to be able to describe some of the processes involved in reproduction.

We often say that Blastocystis organisms representing different subtypes are morphologically indistinguishable; what this actually means is that we do not have the tools to differentiate them morphologically. There may actually be great variation between strains in terms of for instance how they grow in vivo and in vitro and maybe also how they reproduce. Vacuolar forms are the most common form seen in xenic cultures, but other morphotypes are sometimes observed, for instance the granular stage, which, in my experience, is typically seen in cultures that are not “well looked after”, i.e. where medium is not being replaced about twice a week. Dunn and colleagues. (1989) observed that the granular stage could arise from vacuolar stages in cultures where the concentration of horse serum was increased.

I have previously stated that there is no evidence for phagocytosis in Blastocystis. Actually, Dunn et al. (1989) captured what they thought to be bacterial engulfment by ultra-structural analysis, and they also observed bacteria-engulfing pseudopodia in amoeboid stages, in which degraded bacteria were observed. I don't think that I've ever come across this amoeboid stage, but it has been described by quite a few researchers.

Anyway, let's hope for another kind of bubbles this Friday night!

Suggested reading:

Dunn LA, Boreham PF, & Stenzel DJ (1989). Ultrastructural variation of Blastocystis hominis stocks in culture. International Journal for Parasitology, 19 (1), 43-56 PMID: 2707962

Saturday, February 16, 2013

Waiting For The Human Intestinal Eukaryotome

We were lucky enough to have a paper accepted for publication in the ISME Journal (Nature Publishing Group) in which we call for data on the "human intestinal eukaryotome".

In the paper, we start out:

"Recent developments in Next Generation Sequencing (NGS) technologies have allowed culture-independent and deep molecular analysis of the microbial diversity in faecal samples, and have provided new insights into the bacterial composition of the distal gut microbiota. Studies of the microbiome in different patient groups using metagenomics or 16S rRNA gene sequencing are increasing our knowledge of how the microbiota influences health and disease. The majority of recent advances in our understanding of human microbiota structure and dynamic changes in disease were made through phylogenetic interrogation of small subunit (SSU) rRNA (Paliy and Agans 2012). However, until recently such studies have generally failed to include data on common eukaryotic, endobiotic organisms such as single-celled parasites and yeasts ('micro-eukaryotes'). This deficiency may strongly bias the interpretation of results and ignoring an entire kingdom of organisms is a major limitation of human microbiome studies."

Saturday, February 2, 2013

Blog Feedback

I'm very thankful for all the positive feedback I get from readers across the globe, mostly by email. Due to time limits I can only respond to 5-10% of the mail, and I'm sorry for not getting back to the rest of you.

Meanwhile, this blog currently holds more than 60 posts, and you will also find a lot of key words in the right side bar, so take your time and browse a few posts or look up a few relevant key words, -  you might find an answer to one or more  of your questions.

Having said that, I try to read all my email, and I am listening! The feedback and questions that I get are vital for our work and help us identify the avenues that we need to take to unveil the many mysteries of Blastocystis.

And let me just say this for now: A proper microbiological work-up (by state-of-the-art methods, including PCR for intestinal parasites), is something that is offered on a routine basis in only very few laboratories, and also the number of clinically orientated Blastocystis research centres can be counted on one hand, I believe. Subtyping of Blastocystis is currently done mostly in epidemiological surveys (as part of research projects), and I suspect that our lab is one of the very few labs in the world doing subtyping on a routine basis.

Oh, and I've been asked by some readers about how to get blog updates. It's easy: You can follow this blog by email, - just scroll down and find "follow by email" in the right side bar and enter your email address. You can also subscribe to posts via atom (go to the very bottom of the page).

And then here's a little something about stomach acidity and intestinal microbiota from Scientific American, - but make sure to read the comments underneath the post too!
 

Monday, January 14, 2013

A Penny For Your Thoughts

So, what should we do about Blastocystis? What do we want to know?

I believe the imminent answer to the latter question is easy: We want to know whether it’s pathogenic, whether we should treat it and how. But I also think that there are many other interesting aspects of Blastocystis which are also of broad interest to the general public, namely: How about the many cases of asymptomatic Blastocystis carriage? What does Blastocystis do in our guts? Could it have any potentially beneficial impact on our health?

Given the fact that Blastocystis has not been implicated in any outbreaks (admittedly: I guess that no one actually ever looked for Blastocystis in outbreak investigations... except for me!), I reckon that the chance of it being involved in acute diarrhoea is small. So, in that respect it's very different from the other intestinal protists such as Giardia, Cryptosporidium, Cyclospora, microsporidia, even Entamoeba histolytica. It's actually more reminiscent of helminth infections, which are are often chronic, and when light hardly give rise to symptoms (depending on species that is!).So I'm more thinking along the lines of co-evolution, adaptation, etc.

Maybe future research will call for a shift in paradigm, but until then I think that we should do what we already can, just at a larger scale and see where it takes us, namely:

Saturday, January 5, 2013

Where Are We On Blastocystis Subtypes?

As mentioned, Blastocystis exhibits remarkable intrageneric diversity, which is continuously being explored by us and our colleagues. We are convinced that the genus of Blastocystis comprises multiple species, but for now we call them "ribosomal lineages" or "subtypes" and allocate numbers to each subtype, hence ST1, ST2, etc. While the number of subtypes that can be found in humans remains stable, we and our colleagues are still expanding the subtype universe in non-human hosts (I will be blogging on this shortly).

Barcoding currently represents state-of-the-art in Blastocystis subtyping, and luckily this method appears to gain a foothold in labs across the world.

Nine subtypes have been found in humans, but some of them only on rare occasions. A recent study going out from London School of Hygiene and Tropical Medicine and led by Dr Alfellani and published just now in Acta Tropica looked at 356 Blastocystis sequences from samples from the UK and Libya, but also from sub-Saharan Africa, namely Liberia and Nigeria.


Tuesday, December 18, 2012

Blastocystis Highlights 2012

2012 is coming to an end and it is also time for taking stock of the year Blastocystis-wise. We saw many significant scientific papers, among them a paper by Poirier and colleagues, predicting a potential role for Blastocystis in irritable bowel syndrome (IBS), based on analysis of their recent genome data.They propose that Blastocystis is genetically armed with the equipment necessary to cause intestinal dysbiosis, and potentially IBS, which may be a cause of dysbiosis. Indeed, members of this group found that the Blastocystis genome encodes various proteases and hydrolases that, if secreted, may be involved with perturbations of the gut flora; however, we need transcriptional profiling or similar studies to find out, whether these enzymes are actually expressed. Some species of Entamoeba are also in possession of multiple "virulence genes", but for some species they apparently remain un-expressed, and most Entamoeba species are still considered harmless.


Wednesday, December 5, 2012

My Microbes - Share Your Microbiota!

Many people are told by their GPs or specialists that they are infested by Blastocystis. What these people might not always be aware of is the fact that our intestine is home to billions of organisms, most of which are bacteria. Some bacteria are good for you and help you metabolise food items and synthesise compounds that you cannot produce yourself, while others are associated with disease. Some bacteria are supposed to be there and some are not. Blastocystis is very successfully parasitising on the human intestine, but to our knowledge, there is still no convincing pathogenomic evidence of it causing disease. So, what does it do and why is it there? Does it cause disease at all? How do we get it? We are are trying to find out...

Meanwhile, a lot of effort is being put into collecting stool samples from the background population. There is a project called My Microbes, there's the uBiome project and the American Gut Project, just to mention some. For instance, for less than $100 you can have your entire bacterial intestinal microbiome seqeunced and identified. Maybe, you will even get to know your "enterotype"?!

Below is a brief introduction to the enterotypes (courtesy of My.microbes) that I've been blogging about previously:



My.microbes from Anna Pesavento on Vimeo.

It is, however, debatable whether these enterotypes are clear-cut or represent a continuum/gradient. Nevertheless, the prospects of these stupendous microbiome projects are numerous, and once we add the intestinal eukaryotic microbiome to this field and probe into the ecological interplay between eukaryotes, bacteria and the host, new pathways of knowledge will probably lead to many answers to old conundrums, but also to new questions of course. We will get a better impression not only of which bacteria that are beneficial, but also whether - or to which extent - common "scroungers" like Blastocystis are in fact benevolent along some of the lines presented in this recent blogpost.

By the way: Behold the video still: All set for setting up PCR!

Literature:

O’Toole, P. (2012). Changes in the intestinal microbiota from adulthood through to old age Clinical Microbiology and Infection, 18, 44-46 DOI: 10.1111/j.1469-0691.2012.03867.x  

Gosalbes, M., Abellan, J., Durbán, A., Pérez-Cobas, A., Latorre, A., & Moya, A. (2012). Metagenomics of human microbiome: beyond 16s rDNA Clinical Microbiology and Infection, 18, 47-49 DOI: 10.1111/j.1469-0691.2012.03865.x  

Baquero, F., & Nombela, C. (2012). The microbiome as a human organ Clinical Microbiology and Infection, 18, 2-4 DOI: 10.1111/j.1469-0691.2012.03916.x  

Salonen, A., Salojärvi, J., Lahti, L., & de Vos, W. (2012). The adult intestinal core microbiota is determined by analysis depth and health status Clinical Microbiology and Infection, 18, 16-20 DOI: 10.1111/j.1469-0691.2012.03855.x

Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D., Fernandes, G., Tap, J., Bruls, T., Batto, J., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., Kurokawa, K., Leclerc, M., Levenez, F., Manichanh, C., Nielsen, H., Nielsen, T., Pons, N., Poulain, J., Qin, J., Sicheritz-Ponten, T., Tims, S., Torrents, D., Ugarte, E., Zoetendal, E., JunWang, ., Guarner, F., Pedersen, O., de Vos, W., Brunak, S., Doré, J., Consortium, M., Weissenbach, J., Ehrlich, S., & Bork, P. (2011). Enterotypes of the human gut microbiome Nature, 474 (7353), 666-666 DOI: 10.1038/nature10187

O’Toole, P. (2012). Changes in the intestinal microbiota from adulthood through to old age Clinical Microbiology and Infection, 18, 44-46 DOI: 10.1111/j.1469-0691.2012.03867.x  

Gosalbes, M., Abellan, J., Durbán, A., Pérez-Cobas, A., Latorre, A., & Moya, A. (2012). Metagenomics of human microbiome: beyond 16s rDNA Clinical Microbiology and Infection, 18, 47-49 DOI: 10.1111/j.1469-0691.2012.03865.x  

Baquero, F., & Nombela, C. (2012). The microbiome as a human organ Clinical Microbiology and Infection, 18, 2-4 DOI: 10.1111/j.1469-0691.2012.03916.x  

Salonen, A., Salojärvi, J., Lahti, L., & de Vos, W. (2012). The adult intestinal core microbiota is determined by analysis depth and health status Clinical Microbiology and Infection, 18, 16-20 DOI: 10.1111/j.1469-0691.2012.03855.x

Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D., Fernandes, G., Tap, J., Bruls, T., Batto, J., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., Kurokawa, K., Leclerc, M., Levenez, F., Manichanh, C., Nielsen, H., Nielsen, T., Pons, N., Poulain, J., Qin, J., Sicheritz-Ponten, T., Tims, S., Torrents, D., Ugarte, E., Zoetendal, E., JunWang, ., Guarner, F., Pedersen, O., de Vos, W., Brunak, S., Doré, J., Consortium, M., Weissenbach, J., Ehrlich, S., & Bork, P. (2011). Enterotypes of the human gut microbiome Nature, 474 (7353), 666-666 DOI: 10.1038/nature10187

Tuesday, November 20, 2012

XVII Seminar on Amoebiasis, Mérida, Mexico, March 2013

Announcement:

The XVII Seminar on Amebiasis will take place in Mérida, México, March 1-5, 2013. For futher information, please go here.


(Artwork by Jan Voss ("Parasites"))

Saturday, November 17, 2012

Amelioration of Colitis by Parasites - or "An Elliott & Weinstock Special"

Common parasites such as Blastocystis and Dientamoeba fragilis are often incriminated of causing chronic or intermittent diarrhoea or other intestinal symptoms despite the absence of compelling evidence. What most of us probably fail to realise is that parasites may actually prevent and ameliorate intestinal illness, including inflammatory bowel disease, other types of colitis, and other types of autoimmune diseases.

Inflammatory bowel disease (IBD) includes the two most common manifestations ulcerative colitis and Crohn’s Disease and affects more than 2 million people in North America and Europe. They are chronic inflammatory conditions of the gut that usually begin when people are in the second to third decade of life. Although the causes of these inflammatory diseases remain unknown, they are assumed to result from inappropriately aggressive mucosal (i.e. related to our intestinal lining) immune responses to elements or substances in our intestine. IBD is treated with immuno-suppresive drugs.

IBD has emerged primarily in the Western world along with a significant reduction in cases of intestinal helminthiasis due to clean food and water, improved hygiene and sanitation, and the development and use of antibiotics. In Denmark, helminthic infections due to previously common parasitic worms such as Ascaris (roundworm) are now at the point of being almost extinct in the indigenous population.

The hygiene hypothesis proposes that a causal link exists between the adoption of modern hygiene and the increase in the prevalence of immune dysfunctions. The extent of perinatal maturation of the immune system may play a crucial role in terms of our likelihood of developing allergic and autoimmune diseases later in life. The maturation process includes establishment of tolerance to food and harmless microorganisms, but also defence mechanisms against pathogens. If our environment is "too clean", we may fail to give our immune system the best possible opportunity to mature and differentiate appropriately. A robust immune response will protect us from recurrent infections, but if misdirected, it can cause disease.

Part of our immune system is the "adaptive immune system" -  or our "immunologic memory" - made up by cells such as lymphocytes (T- and B-cells), macrophages, dendritic cells, etc. plus antibodies and hormone-like substances (eg. cytokines) that are secreted to activate/inactivate or up- and down-regulate these cells. Our immune systems has to be able to recognise a plethora of foreign material such as bacteria, viruses and parasites, and to distinguish "self" from "non-self". IBD may be caused by mal-functions in our own immune system, and so may a lot of other diseases, diseases that we call "autoimmune diseases", and which include coeliac disease, multiple sclerosis, type 1 diabetes, and rheumatoid arthritis.

10,000 years ago, humans were infected by a variety of species of worms that are common in some parts of the world even today and hence humans and parasites have co-evolved over thousands of years. Importantly, most wild animals in their natural habitat are carriers of many types of parasites. A "clever" parasite does little harm to its host. Parasites have developed mechanisms that enable them to survive in their hosts, and also, the human immune system has developed a way to adapt to these common intruders.

Egg of Trichuris trichiura. Courtesy of Dr Marianne Lebbad.
How can one explain the amelioration of symptoms due to colitis by the presence of intestinal nematodes? Helminths appear to induce immune host regulatory cells that suppress inflammation, and helminth infections are strong inducers of immune regulatory circuits. The immune system changes in response to helminth colonisation and factors secreted by helminths that can influence immune cell function. It is likely that several immune-regulatory mechanisms are exploited by individual helminths. Otherwise, a helminth could not reliably evade our immune system to reproduce.

A new study has produced data that suggest that treatment of macaques suffering from chronic diarrhoea with eggs of the whipworm Trichuris suis can alleviate symptoms and modulate both the intestinal microbiota and immunoregulatory pathways. Trichuris suis is the whipworm of the pig, and contrary to Trichuris trichiura (image), T. suis appears not to be able to produce disease in primate hosts (including humans). When T. suis ova (TSO) are administered to humans, transient shedding of ova in faeces may be seen after a few weeks, but the individual remains asymptomatic.
Gene expression profiling of colonic biopsies from the macaques treated with TSO revealed up-regulation of genes typically involved in the so-called Th1-type immuno-response prior to TSO challenge, while induction of the Th2-type response followed after the TSO challenge; the Th2-type response resulted in mucosal repair, probably by increasing mucus production and turnover of epithelial cells, which again led to a reduction of bacterial attachment to the gut lining and a restoration of microbial diversity.

Briefly, a Th1-type response is generally a pro-inflammatory response that, among many other things, is responsible for microbicidal actions and perpetuating autoimmune responses. Excessive pro-inflammatory responses can lead to uncontrolled tissue damage, so there needs to be a mechanism to counteract this. The Th2­-type response includes the secretion of the anti-inflammatory cytokines, co-responsible for a general anti­-inflammatory response. In excess, Th2-type responses will counteract the Th1-mediated microbicidal action. The optimal scenario would therefore seem to be that humans should produce a well balanced Th1- and Th2-type response, suited to the immune challenge.
On top of the immunoregulatory impact, there is emerging evidence that helminths promote the growth and expansion of groups of bacteria that are beneficial or "probiotic" to the host. In the study of the macaques, the TSO induced a change in the intestinal microbiota.

While variation in160 genes in the human genome or more have been associated with increased risk of developing IBD, no specific gene variant that is sufficient or required for dysregulated mucosal inflammation as occurs in Crohn's disease or ulcerative colitis has been identified so far. There is a field of thought now saying that - over thousands of years - the human gut flora, including helminths, drove the development of variations in genes orchestrating various immune response pathways, and such genetic variations selected to operate under the influence of helminth infection could cause disease when operating without that influence.

So, the take home message here is that infestation by intestinal parasites may be a double-edged sword: While on one hand they may cause symptoms, they may on the other hand prevent us from developing inflammatory bowel disease and other autoimmune or allergic manifestations. Hence, helminths, although parasites, may contribute something in return to their hosts, and the loss of helminths removes a natural governor that helped to prevent disease due to immune regulation. Of course, more trials are needed before "helminth therapy" can actually be standardised, commercialised and used in the prophylaxis and treatment of IBD and gut allergic conditions. Once a good mechanistic understanding of how helminths alter immunity is available, it may even be possible to apply identified factors individually or in combination to treat disease.

As always, things are much more complex than presented here, but this post gives an impression of some of the fields of thought. Not all autoimmune diseases are driven by excessive Th1-type responses; some types of asthma may be driven by Th2-type response, but even here, helminths may favourably modulate immunoregulatory pathways.

Obviously, it would be interesting to explore how other parasitic infections impact on our immune system and gut flora. Interestingly, one helminth species appears to have "survived" in our "sterile" environment, - the pinworm (Enterobius)... and as pointed out in one of my recent blog posts (go here), many of us are definitely exposed to parasites that persist in our intestines for months, maybe years. What's their role in all of this?


Further reading:

Dirtying Up Our Diets - go here

Parasitic Worm Eggs Ease Intestinal Ills By Changing Gut Microbiota - go here.

Jostins L, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 491 (7422), 119-24 PMID: 23128233

Berger, A. (2000). Science commentary: Th1 and Th2 responses: what are they? BMJ, 321 (7258), 424-424 DOI: 10.1136/bmj.321.7258.424
 
Elliott, D., & Weinstock, J. (2012). Where are we on worms? Current Opinion in Gastroenterology, 28 (6), 551-556 DOI: 10.1097/MOG.0b013e3283572f73
 
Elliott, D., & Weinstock, J. (2012). Helminth-host immunological interactions: prevention and control of immune-mediated diseases Annals of the New York Academy of Sciences, 1247 (1), 83-96 DOI: 10.1111/j.1749-6632.2011.06292.x
 
Weinstock, J. (2012). Autoimmunity: The worm returns Nature, 491 (7423), 183-185 DOI: 10.1038/491183a

Elliott DE, Summers RW, & Weinstock JV (2007). Helminths as governors of immune-mediated inflammation. International journal for parasitology, 37 (5), 457-64 PMID: 17313951

Broadhurst, MJ., et al.Therapeutic helminth infection of macaques with idiopathic chronic diarrhoea alters the inflammatory signature and mucosal microbiota of the colon PLoS Pathogens (PLoS Pathog 8(11): e1003000. doi:10.1371/journal.ppat.1003000).